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SECTION I

INTRODUCTION

Bounded-wave electromagnetic-pulse (EMP) simulators provide one means to
generate simulated EMP's for testing the EMP responses of aircraft and missiles
on the system level (ref. 1). A simulator can be designed to launch an electro-
magnetic pulse into the simulator volume which closely approximates the actual
nuclear EMP., This ability, however, does not imply that the actual interaction
between the nuclear EMP and the test object is also thereby automatically closely
simulated. In the simulator there exists an additional interaction between the
simulator structure and the test object which is absent in the actual EMP
encounter in free space. This Interaction adversely affects the quality of
the simulation. In order to interpret and utilize correctly the simulator
test data, it is necessary to estimate and make allowance for this simulator/

test-object interaction.

This report presents an analytical study of the simulator/test-object
interaction. It employs an idealized model with simplified geometries to keep
the mathematics manageable. The bounded-wave EMP simulator is modeled by a
pair of parallel, perfectly conducting, flat plates of infinite extent, as
depicted in figure 1. Such a structure is an electromagnetic waveguide. Let
the spacing between the two plates be denoted by h . A rectangular coordinate
system can be set up such that the lower plate is at z=0 and the upper plate
at z=h . The test object is taken to be a hollow cylinder or tube of cross-
sectional radius a and length L . It is considered to be perfectly conducting
and of infinitesimal thickness. The axis of the tube is oriented perpendicular
to the two plates, and can be taken to coincide with the z-axis. The length
L is then of necessity less than h . Let the lower end of the tube be at a
height b above the lower plate.

The tube is a sufficiently simple model of a missile or aircraft structure,
while the infinite plates constitute an idealization of the parallel-plate
section of a bounded-wave simulator. By choosing this idealized model, it is
possible to perform a rigorous and exact formulation of the simulator/test-
object interaction problem which is at the same time not too complicated for an

analytical solution.

e e e e e e e —————— ST xS . pome

ke SRR ooy AR Y e,

!
D
.
.!

e LY.




oL g AR e R e

309fqQ 3891 [¥OTAPUFTLD € pue I03IBTNWES 2IV[J-TA[[¥IBJ B UD9MIaG UOTIDBRIIIUT 9Yl Jo L131dwod)y

*1 2an813

(o=2) \ q |
ojojd Jamo| * dN3 pojojnuys
— | rat———
1 _
y e ———
[
_
(4=2) '
o4oid soddn 0e I.._ _Al




SECTION II

ELECTROMAGNETIC POTENTIALS

The specific goal of this analysis is to calculate the electric current
induced on the cylinder when the parallel-plate waveguide is excited by an
electromagnetic wave. This electromagnetic wave can, for example, be a simu-
lated EMP in the form of the transverse-electromagnetic (TEM) mode of the
waveguide. The effect of the simulator/test-object interaction is estimated
by comparing this induced current with its corresponding value when the cylinder

is excited in free space in the absence of the simulator,

The current induced on the cylinder by an incident electromagnetic wave
in the parallel-plate waveguide can be evaluated by solving an integro-
differential equation. The derivation of this equation requires a considerable
amount of calculation. One first iantroduces the electromagnetic scalar and
vector potentials V and A for the electromagnetic fields E?c and géc

scattered off the cylinder and the plates, such that

ES(r,0) = - W) - - Ao, B =Ty )

In the Lorentz gauge these potentials are related by the Lorentz condition:

1 3
V'é(z,t) + -c—z'gg V(E,t) = 0 (2)

and individually satisfy the wave equation:

2 2
(Vz - Lza—z)‘“zn:) =0, (VZ - —12'3—2)5(5,0 =0 (3)
c” 9t c at

At z=0 and h , on the surfaces of the two parallel plates, the
tangential components of E?c and the normal component of E?c must vanish.
By writing out equations (1) and (2) in rectangular component form, one can

easily convince oneself that these boundary conditions on the fields imply

the following boundary conditions on the potentials:




V(zr,t) = A (r,t) = Ay(g,t) =0
4)
3
3z Az(E’t) 0
for z=0 and h . Thus the scalar potential and the tangential components of
the vector potential satisfy the homogeneous Dirichlet boundary condition on

the plates, while the normal component of the vector potential satisfies the

homogeneous Neumann boundary condition.

It will be convenient to go over from the time variable t to a complex
frequency variable s by introducing the Laplace transforms of all time-
dependent quantities, For example, the Laplace transform of the scalar

potential is

V(r,s) = f“ dt e-StV(E,t) (5)

-0

Under this transformation equations (3) become

2 yHvE,e =0, P-yHar,s) =0 (6)
where

Y"‘:‘ €))

Their solutions can be represented as definite integrals over the surface of

the cylinder:

V(r,s) = 21; J r,r',8)o(x',s)ds’
A (r,8) = u, I Gy (r,z',8)K (r',s)ds’
A (x,s) = u, J Gp(z,r',8)K (x',8)dS"
Az(g,s) = U, J r,r’ ,s)Kz(g',s)dS' (8)
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In these expressions, ¢ and K are the surface charge and current densities
induced on the cylinder by the incident wave; GD and GN are the Green's
functions for the Dirichlet and Neumann boundary-value problems of the parallel-~
plate waveguide; and the field position vector r = (x,y,z) stands for a point
in space while the source position vector r' = (x',y',z') stands for a point

on the surface of the cylinder,

The Green's functions GD and GN are solutions of the nonhomogeneous

Helmholtz equation:

(7% =D (2,x",8) = - 62 (z-2")
9
(VZ-YZ)GN(E.E',s) = - 63(};-5‘)

They satisfy, respectively, the homogeneous Dirichlet boundary condition GD=()
and the homogeneous Neumann boundary condition QGN/Sz = 0 on the plates z=0
and h . In addition they both satisfy the outgoing-wave condition at infinity.

Using standard Green's function techniques, one finds that

GD(E,E',S) = nzl Un(x,y,x',y',s)sin p z sin Pz’
(10)

Gy(zr,r',8) = Zo U_(x,y,x',5",8)cos p z cos p z'
n=

/2 2
Un(x,}’,x',}",s) = L K( Y +pn R)

The (o}
n

Ko is a modified Bessel function,

R = ~/(x-x')2 + (y-y')2

is defined by:
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Furthermore, to satisfy the outgoing-wave condition, the branch of the square

root in equation (12) is to be chosen to make
/2 2
Y +p, Y (15)
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SECTION 1II

DERIVATION OF INTEGRODIFFERENTIAL EQUATION

The surface charge density o© can be eliminated from the calculation by

using the continuity equation:
so(r,s) + V-K(r,s) =0 (16)

The independent unknown quantities of the problem are then the two components

of the surface current density K . One can set up two integrodifferential
equations for K by applying the boundary conditions on the tangential compo-
nents of the total electric field on the surface of the cylinder. In a standard
cylindrical coordinate system (p,p,z) with polar axis coinciding with the axis
of the cylinder, these boundary conditions are

Einc(r,s) + Esc(r,s) =0, Einc(r,s) + Esc(r,s) =0 a7n
z - z = ® = v =

for r on the cylinder.

The two integrodifferential equations so derived are generally coupled.
However, for the specific geometry of this problem, it is possible to obtain
from them a single closed integrodifferential equation for the total axial

current I defined as

2w
I(z,s8) = a J de Kzﬁp,z,s) (18)
0

The total axial current by itself 13 often sufficient to characterize the
excitation of a thin cylinder at low frequencies, since in this limit the

circumferential current is small by comparison.

To derive the integrodifferential equation for the total axial current I,

one writes down the first of the boundary conditions (17) in terms of the
potentials:

%E V(r,s) + s Az(z,s) = E:nc(g,S) (19)




Substituting the integral representations (8) of the potentials into equation
(19) and eliminating the surface charge density ¢ by use of equation (16), one

> obtains

5

3 13 o g 42

1 2 f Gy(r,x',s) [a 37 Ko (X's8) + 557 Kz(g',s)] as' .
i (20)
¥ 2 ' ' v inc

$ - ¥ | 64(zx,x',8)R (r',s)dS" = - se E " (r,s)

g This equation holds for b < z,z' < L+b , with

")

r=(a,9,2) , ' o= (a,9',2") (21)
5 and

3 27 L+b

3 I ds' = a [ & [D dz' (22)
i 0

It is to be especially noted that, in the cylindrical coordinates, the two
: Green'’s functions GD and GN depend on the two azimuthal angles ¢ and o'
1 only through the cosine of their difference ¢-9' , so that

GD(_I;,E',S) = G (cos(@-9'), z,2z',s)
(23)

GN(E,E_',S) = GN(COS(CP-CP'), z,z',s)

‘ This property is of vital importance in the following derivation of the integro-
|
’ differential equation for I .

If one integrates both sides of equation (20) over ¢ from O to 2w ,

T

two important events take place. First, the ¢ '-dependence of the Green's

functions drops out:

2n 2%
f & GD(cos(fp-tp'), z,z2',8) = f dy GD(cos ¥, 2,2',8)
0 0

<ne

= 21 I‘D(z,z' '8)

10
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2w 2n
I de GN (cos(p-9'), 2,2',8) = f dy GN(cos ¥, z,2',8)
0 0

= 27 Ty (z,2',8) (24)

Therefore the subsequent «'-integration in equation (20) is carried out solely
on the surface current density components Ktp and Kz . Second, the term in

{
%
|
Ktp vanishes after the ¢'-integration because i

JZw 3 Q' =2m
' — K (r',8) = K (r',s) =0 (25)
0 *® ' - ? P'=0

On the other hand the ®'-integration of Kz yields directly the total axial

current I , as defined in equation (18). Gathering together all these results,

g one obtains the following nonhomogeneous integro-differential equation for I :

3 L+b 3
—_— ' ' o [
5% L dz FD(z,z »8) YU I(z',s)

;! (26)

| L+b

; - YZ [ dz'PN(z,z',S)I(Z',s) = - se&iﬁnc(z,s)

: b

! where

‘ 2n ;
. =ine .1 inc j

E, (z,s) 5= I do E (a,9,z,s) 2n

% |
| That 1s, Einc is the average value of the z-component of the incident electric

field around the circumference of the cylinder at a fixed value of z .,

One should emphasize that equation (26) is an exact equation. No approxi-
mation has been invoked in its derivation. This remarkable, rigorous result

is actually made possible through the judicious choice of the geometry of the

model, If a different geometry were chosen, it 1s doubtful that a closed
. equation for I similar to equation (26) could be derived without the help
of assumptions and approximations.

11
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The two functions PD and T, in equation (26) can be evaluated
explicitly in closed form, Substituting equation (10) into equationm (24),

one obtains

PD(z,z',s) - 2 wn(s)sin p,z sin pnz'

n=1
« (28)
FN(Z,z',s) = 2 W _(8)cos P,z cos pnz'
n=0
where
27
1 (s) =L L g (2afag? $)
Wn(s) 7a L dy The_ K, 2ary +p_ sin 3
(29)

Io (/Yz—+_p§ a) Ko (/yz+p: a)

The
n

Use has been made of the addition theorem for the cylindrical functions (ref. 2)

in evaluating the integral in equation (29),




SECTION IV

REDUCTION TO MATRIX EQUATION

Equation (26) 1s a second-order integrodifferential equation. It

ctherefore requires the specification of two boundary conditions in the
coordinate z for the unique determination of the total axial current I .

These boundary conditions can be taken as the two end conditions,.
I(z,s) = 0 for z=b and L+b (30)

However, it is often inconvenient to treat the problem in hand directly as a
two-point boundary-value problem for equation (26). For the purposes of
analytical approximation or numerical solution, much advantage can be gained
by combining equation (26) and the boundary conditions (30) and reducing them
to a single matrix equation.

The transition to a matrix equation is achieved by going over to a
discrete system of description. To this end one introduces a complete set
of mutually orthogonal functions over the interval b < z < L+b which
vanish at the two end points z=b and L+b . This set consists of the
sine functions sin km(z-b) with

k = — m=1,2,3,... (31)

These functions can be considered as the orthogonal basis vectors of an infinite-
dimensional vector space. The current I , satisfying the boundary conditions

(30), can be expanded in terms of these basis vectors:

I(z,8) = ] C (s)sin k (z-b) (32)
m=l

The discrete set of expansion coefficients Cm completely determines I .

Next, one substitutes equations (28) into equation (26) and obtains

13 '




%; 1 W (8)A (s)sin P2 ~ yz ) W (s)B_(s)cos p z
n=1 n n n'O (33)

- =inc
- 8¢ E, (z,8)

wvhere
L+b 3
An(l) - L dz'sin pnz' 337 1(z',s) (34)
and
L+b
Bn(l) - L dz'cos pnz'I(z',s) (35)

Performing an integration by parts in equation (34) and making use of equation
(30), one finds that A, and Bn are related:

An(s) - o pan(s) (36)

Substituting equation (32) into equation (35), one has

B, (s) = mzl @ Cols) 37)
where

[ 3 -

L+b
-]

L 1]
dz'cos p z' sin km(z'-b) (38)
b

Note that the index n runs from 0 to o while the index m runs from
1 to =,

Equation (33) can be regarded as a vector relation in the infinite-
dimensional vector space. Tie component of this relation along the basis
vector sin km(z-b) can be obtained by multiplying equation (33) by
sin k'(z-b) and integrating over z from b to L+b . The derivative
in the first term is again treated by integration by parts. The result then is

L] 2 L
nzl Bomkmiin (84, (8) + v nzo Aty (8)E (8) = D (8) (39)

14
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where
- L+b
Bom = I dz sin P,z cos km(z-b) (40)
. b
and L+b toc
E Dm(s) = sc, I dz sin km(z-b)l?.z (z,s) (41)
b

It is not difficult to see that a and 8 are related:
nm nm

Bk = = Pn®nm (42)

Substituting equations (36), (37) and (42) into equation (39), one obtains

! a matrix equation for the expansion coefficients Cz :

!.zl Mmz(s)Cz(s) - Dm(s) (43)
where
T .2 2
Mmz(’) - nZo (y +pn)wn(s)°nmun2 (44)

%*
The matrix M is symmetric (Mmz = Mzm) but not Hermitian (Mmz ¢ Mm) .

B s T
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SECTION V

APPROXIMATE ANALYTICAL SOLCUTION

The matrix equation (43) is a concise and exact formulation of the
simulator/test-object interaction problem. From the standpoint of solving
the problem it is also a convenient starting point. For example, an accurate
numerical solution can always be obtained by using standard methods {n numerical
matrix calculus. In the following, however, an approximate analytical solution

will be constructed instead.

The approximation employed below is based on the observation that the
diagonal elements of the matrix M in equation (43) are considerably greater
than the off-diagonal elements. The reason behind this disparity is as follows.
1f one examines closely the structure of the matrix element Mm2 given in
equation (44), one finds that the combination anmanl has the most violent
variation with the summation index n . It has therefore a great effect on

the value of Mm The factor @ n can be evaluated from equation (38):

l .
a = “n [cos p.b - (-1)"cos p (L*-b)] (45)
nm 2 2 n n
km"Pn

It assumes both positive and negative values. In an off-diagonal matrix element
Mmz with m # L , these positive and negative values of @ and @ to a
considerable extent mutually cancel out during the summation over n . However,
the situation is different with a diagonal matrix element Mmm . With m= ¢ |

the product 3. n® becomes the square “ﬁm which is always positive. It

nf
contributes constructively to Mmm , and adds up to a large value. For small
values of m and ¢ , sample numerical calculations show that the diagonal

elements are one order of magnitude greater than the off-diagonal ones. The

disparity 1s expected to increase for larger values of m and ¢ .

This property of the matrix elements is the basis of an approximation
scheme for solving the matrix equation (43). One first rearranges the equation
in the form

M (8)Co(s) = D (s) - 221 M, (8)C, (s) (46)
2em

16




The diagonal element Mm has been taken out from the sum. The remaining

sum contains only off-diagonal elements, and is regarded as a perturbation.
A first approximation to the solution of equation (46) 1is therefore

(L . m
Cu (s) TERO) (47)

Successive approximations can be obtained by iteration. For example, the

second approximation is

D (s) o Mm(s)

(2) m )
C"(s) = - c,” " (s) (48)
m Mmzss 221 Mmzss L
2ém

In the following sections the solution in the first approximation will be

examined.
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SECTION V1

COMPLEX-FREQUENCY-PLANE SINGULARITIES

In the first approximation of equation (47) the total axial current
induced on the cylinder is given by

o D (s)
I(z,s) = L sin k_(z -b) (49)
mzl Mhsts m

In the time domain this current becomes

CHjw o D _(s)
I(z,t) = E%T f ds &°F )) EELTET sin k_(z-b) (50)
C-jo m=1 “mm

where C 1is an appropriate positive constant. The value of the integral
is dependent on the singularities of the integrand in the left half of the
complex s-plane. The parameters of these singularities can be used to

characterize the excitation of the cylinder.

The s-plane singularities can be grouped into three classes. The first
class consists of singularities of the factor Dm . By equation (41) these
singularities are introduced by ‘the frequency dependence of the incident
electric field E:nc . The second class consists of singularities of the
factor M.+ BY equation (44) these singularities are contained in the func-~
tion Wn defined in equation (29). From the well-known analytical properties
of the modiffed Bessel functions, one concludes that these singularities are
branch cuts with branch points determined by the vanishing of the argument of

the function Ko( Y 4-pna). By equation (7) the branch points are located at

s=: 322 n=0,1,2,... (51)
along the imaginary axis. They are characteristic of the parallel-plate
waveguide, and depend neither on the length L nor the radius a of the
cylinder., 1In fact they correspond to the excitation thresholds of the wave-
guide propagation modes. Examples of these waveguide mode singularities are

shown in figure 2.
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Figure 2. Branch-Cut Singularities in the Complex-Frequency Plane

Characterizing the Waveguide Modes
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i The third class of s-plane singularities consists of the zeros of Mmm .
1 They give rise to poles in the integrand of equation (50), and are determined

! by solving the transcendental equation

© 2
s 2 2
Mm(s) = nZO(c_z + Pn>Wn(S)anm =0 m=1,2,3,... (52)

The solutions depend on all the parameters h, L. and a of the model. They
can be interpreted as the natural frequencies of certain natural modes of the

surface current on the cylinder. For each m , there are two solutions of

r equation (52) which form a complex-conjugate pair. They lie in the second
] and third quadrants of the s-plane. The natural modes corresponding to these
natural frequencies are the sine functions in equation (50). Thus, in this

;, approximation, the natural modes are simple sinusoidal currents.

Let the solution of equation (52) in the second quadrant be denoted by

*
Sy - The other solution is its complex conjugate Sh in the third quadrant.

Decompose S into its real and imaginary parts:

Sp ™ s& + 3 s; (53)

In principle, Sy and s; can be obtained accurately by numerical techniques.
In the following, however, one will be content with deriving approximate

analytical expressions. The method of approximation will be based on the

assumption that the two poles lie close to the imaginary axis, so that they
can be approximately located by observing their influence on the behavior of
Mmm along the imaginary axis.

On the imaginary s-axis, let
s = jw , vy = ik (54)
where w and k are both real and vary from -» to = , They are related by

w= ke (55)
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The function wn can be decomposed into its real and imaginary parts:

wn(jw) = W!"(m) + jW;(w) (56)

By equations (15) and (29), one has

1 (‘/2 2 > (|/2 2 ) ( 2 2)
! B —— - - -
Wn(m) The._ I P -k a/K\¥p_-k" a 8 P k

-7!]_-?5 Jo(Véz-pi a>Y°(¢(2-pi a)‘)(kz-Pi)
n
W;(w) -ow 1 Ji(/kz-pi a)e(kz—pi) (57)

e

where Jo and Yo are the Bessel and Neumann functions, and 6 is the unit

step function:

g(x) = (58)

The square roots in equation (57) are all considered positive.

In a similar manner the value of Mmm along the imaginary axis can be

decomposed into its real and imaginary parts:

Mm(jm) = Mt;m(m) + jM"!"m(w) (59)
with - 2
' = w 2 ' 2
Mm(w) nZO (— ? + pn> Wﬂ(w)anm
w @ = ] SN PR (60)
mm a0 —;7 Po ) %2 %am

When Jw 1is close to the solution sy of equation (52) in the second quadrant,

M.‘;m can be seen to pass through a zero. This property is used to determine

s"!'l approximately:

Coniiae = s N

3
.
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M' (8") = 0
mm ' m

which is a transcendental equation involving real quantities only. It is

simpler to solve than the original complex equation (52).

A practical technique to solve equation (61) is by iteration. Using
equation (60) one can rewrite it as
L

) PZW'(S")a2
a=0 nn m nm

I w(s™a?
a=0 n m nm

The iteration is performed by successively substituting trial solutions into
the right-hand side and deriving improved approximations on the left-hand side.
In the appendix it is shown that, in the infinitely thin cylinder limit, the
solution of equation (62) is simply

(63)

Yance, for a thin cylinder, one can use this result to start the iteration.

An improved approximation to s; is therefore

) pZW'(k c)a2
. qeg oM omTom

Sm=C o
L

W' (k c)u.2
a0 0 @ nm

The following calculation will be based on this approximate solution of
equation (61).

In the neighborhood of this solution, M&m has the following approxi-

mate expansion:

M&m(w) x Qm(w - S;)




. s - b

where s; is given by equatjon (64) and Qm is a real quantity defined by

28"

m 2
=3 ) W (ke (66)
¢’ n=0

The imaginary part M' has a hump around this solution and can be approximated

mm
by its value at w = kmc :

() o= M (koc) (67)

Gathering together these results, one finds that the complex function Mmm has

the expansion

~ - e i at o ot
Mmm(jm) Qm(m sh+3 sm) for w sy (68)

where

tao Ll g
Sn o M;m(kmc) (69)

Equation (68) shows that, in the complex s-plane (jw + s) , the function
M has a zero at s = s' + js'", Therefore the reciprocal of M has a
mm - m m m mm

pole at the same point. In the neighborhood of this point, one has

1 - -] -
Mmm(s) = Qm(s"sm) for s = s, (70)

Similarly, by repeating the calculation in the third quadrant, one finds that

*
M has a second zero at s_ , and that
mm m

1 = J for s = g* (71)
Mmm(S) Q (S - S*) m
m m

In summary, the total axial current on the cylinder given in equation

(49) has the following expansion in the complex s-plane:
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@ Rm(z) R;(z)

I(z,s) = ) + ¥(z,s) (72)
s8-8
m=1 m s8-8
m
It consists of a sum of simple poles and a remainder term V¥ . For each

value of m there is a pair of poles situated at

*
' " = a' "
s, = s+ 3 s and s, =8 -3 (73)

where s; and s; are approximately given by equations (64) and (69). By
equations (41), (49) and (70), the residue R is

3D (s)
m m
Rm(z) = - 3 sin km(z-b)
m
j Smeo L+b ' ' —inC [}
- - 7 sin km(z-b) L dz'sin km(z -b)Ez (z ,sm) (74)

These poles correspond to the natural modes of the cylinder. The remainder
Y contains all other contributions from the branch cuts of the waveguide

rodes as well as whatever singularities the incident electric field may

introduce.




SECTION VII

NUMERICAL RESULTS

The three quantities s; s s;

singularities in the complex s-plane, are given analytically in equations (64),

and Qm , characteristic of the simple-pole

(66) and (69). In the following they are evaluated numerically as funcrions
of the geometrical parameters h , a , L and the natural-mode index m . One
takes a case in which the cylinder is situated midway between the two parallel

plates, so that

b=(h-1L)/2 and 1L1+b = (h+L)/2 (75)

This 1is a highly symmetric situation. Accordingly, the quantity “nm assumes
a simple form:

P L

cos %; cos -%- m odd, n even
2k p.L
- m on n
& n kz 7 {sin 5 sin —- m even, n odd (76)
m~ Pn
0 otherwise

Thus o m is nonzero only if n and m are of opposite parities.

The numerical calculation is performed for the first six natural modes

(m=1 to 6) . One picks four values of the ratio a/L :
%-0.003, 0.01, 0.03, 0.1 7

and three values of the ratio L/h :

L.

h 0.2, 0,5003, 0,8003 (78)

The results are shown in tebles 1 to 3, They are also plotted in figures 3 to 5.

The odd cholces of the last two values of L/h in equation (78) need
immediate explanation. When the ratio L/h 1is given simple, rational values
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Table 1

POLE SINGULARITY PARAMETERS FOR L/h=0.2

a s;L s;L
m T e e chﬂm
0.003 | -0.085 | 0.935 | 14.5
0.00 | -0.114 | 0.927 | 10.9
0.03 | -0.162 | 0.017 7.59
0.1 -0.290 | 0.918 4.09
0.003 | -0.117 | 1.91 27.0
0.00 | -0.160 | 1.91 19.7
0.03 | -0.238 | 1.01 13.1
0.1 -0.460 | 1.98 6.03
0.003 | -0.138 | 2.90 38.7
0.00 | -0.192 | 2,90 27.7
3] 0.03 | -0.203 | 2.01 17.8
0.1 -0.578 | 3.09 7.16
0.003 | -0.154 | 3.89 49.8
0.00 | -0.217 | 3.89 35.2
41 o.03 | -0.337 | 3.92 21.9
0.1 ~0.647 | 4.22 7.86
0.003 | -0.167 | 4.88 60.6
0.00 | -0.238 | 4.89 42.3
> | 003 | -0.374 | 4.94 25.7
0.1 -0.674 | 5.33 8.30
0.003 | -0.179 | s.88 71.1
0.00 | -0.257 | s.89 49.1
¢ | o.03 | -0.406 | 5.95 29.1
0.1 -0.671 | 6.42 8.61




POLE SINGULARITY PARAMETERS FOR L/h =0.5003

Table 2

a s;L s;L
m 1 vy - 2 wcﬂm

0.003 -0.052 0.952 19.1
0.01 -0.064 0.950 15.5
0.03 -0.081 0.950 12.2
0.1 -0.109 0.963 8.73
0.003 -0.126 1.9 26.7
0.01 ~0.174 1.93 19.2
0.03 -0.266 1.91 12.5
0.1 -0.557 1.99 5.35
0.003 -0.094 2.90 49.3
0.01 -0.119 2.91 38.6
0.03 ~0.155 2.93 28.9
0.1 -0.186 3.03 18.4
0.003 -0.165 3.93 49.1
0.01 -0.236 3.92 34.1
0.03 -0.379 3.93 20.6

.1 ~0.848 4,27 6.47
0.003 ~-0.117 4.88 76.4
0.01 -0.152 4.90 58.6
0.03 -0.199 4.95 42.3
0.1 -0.176 5.10 25.1
0.003 -0.191 5.92 69.8
0.01 -0.280 5.92 47.4
0.03 -0.458 5.97 27.1
0.1 ~-0.976 6.61 6.54

a2 bk
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POLE SINGULARITY PARAMETERS FOR L/h= (0.8003

Table 3

a s;lL s;'lL

m I Y e 2'rrc$2m
0.003 -0.114 0.956 14.1
0.01 ~0.154 0.947 10.4
0.03 -0.226 0.936 7.04
0.1 -0.431 0.952 3.53
0.003 -0.128 1.97 26.9
0.01 -0.177 1.97 19.5
0.03 -0.266 1.99 12.8
0.1 -0.504 2.15 5.77
0.003 -0.110 2.97 41.1
0.01 -0.151 2.98 30.0
0.03 -0.220 3.01 20.0
0.1 -0.327 3.21 9.50
0.003 -0.061 3.95 77.9
0.01 -0.075 3.96 63.1
0.03 ~-0.090 3.98 49.6
0.1 -0.065 4.04 35.3
0.003 -0.129 4,88 64.6
0.01 ~0.180 4.87 46.1
0.03 -0.270 4.88 29.2
0.1 -0.447 5.02 10.6
0.003 -0.182 5.86 70.2
0.01 -0.265 5.85 48.0
0.03 -0.435 5.86 27.17
0.1 -1.25 6.22 5.76

Y
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Figure 3. Pole Singularities in the Complex-Frequency Plane for L/h=0.2
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such as 0.5, it may happen that, for a certain pair of integers m and n ,

the following equality holds: .
Ky ™ Pp (79)

In this event one finds a logarithmic divergence in equation (64) arising from
the exact vanishing of the argument of the function Ko or Yo . This
divergence nevertheless is not really there, and can be traced back to a
harmless term vanishing as ¢ %ne¢ in the function Mmm . It is introduced

into the picture through the iterative scheme of equation (62) and the use of

k,c as the first trial solution in equation (64). It can be easily avoided
by starting the iteration with a slightly different trial solution. An alter-
native procedure is to alter the ratio L/h by a small amount. For example,
the ratio L/h = 0.5 can be replaced by L/h = 0.5003 , thereby destroying
the equality (79).

For m=1¢to 6 and n of opposite parity to m , the equality is not
satisfied for L/h = 0.2, However, for L/h = 0.5 , equation (79) holds for
m=1, 3and 5. For L/h =20,8, it holds for m = 4 . Accordingly, in the
numerical calculation, the last two simple values of L/h are changed slightly
to 0.5003 and 0.8003.

Even though no divergence really occurs, equation (79) still clearly
renrasents a condition of resonance and should lead to observable effects. 1
The resonance results from the equality of the wavelengths of certain charac-
teristic excitations on the cylinder and in the waveguide. Its effects are
quite evident in figures 3 to 5. At precisely those values of m enumerated
in the preceding paragraph, the complex poles show a decided shift toward
the imaginary axis. This means that the corresponding natural modes of the
cviinder are only weakly damped. Thus, under the excitation of a broadband
incident wave, the response of the cylinder will be predominantly in these
special modes.

All the results in tables 1 to 3 are of course obtained by using the

first-iterated solution of equation (62). The quality of this solution can




be measured by comparing the output value of s; with its input trial value

kmc . The tables show that these two values are very close. Specifically,

the calculated value of sgL/wc is very close to m ., This agreement can be
taken as an indication of the reliability of the first-iterated solution.

i
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SECTION VIII

CONCLUSIONS

It is possible to draw a number of general conclusions from the specific

rumerical results.

The effects of the simulator/test-object interaction are clearly seen
in figures 3 to 5. The locations of the poles in the complex-frequency plane,
corresponding to the natural modes of the current on the cylinder, are strongly
dependent on the length-to-separation ratioc L/h . When L/h is small, the
dimensions of the simulator are much greater than those of the test object.
The simulator/test-object interaction is weak, at least for the lowest few
natural modes. For example, the distribution of the poles in figure 3 for
L/h = 0.2 1is not substantially different from that in the case of a thin
cylinder in free space (ref. 3). As the ratio L/h 1is increased, the effects
of the 1nteraction‘strengthen: the poles are shifted violently around. The
dependence of their movement on L/h , however, is not monotonic but rather
oscillatory and in the nature of resonances. For a given ratio L/h, modes
that satisfy the resonance condition (79) are heavily favored by the simulator/
test-object interaction, in the semse that they are only weakly damped. These

resonant cases are exemplified by the numerical results in figures 4 and 5.

The poles, however, are not sufficient in themselves to provide a complete
measure of the simulator/test-object interaction. The presence of the simulator
structure indroduces additional singularities into the complex-frequency plane.
For the parallel-plate bounded-wave simulator in this problem, these singularities
consist of an infinite number of branch cuts. The contribution from the branch
cuts must be considered if one is to obtain a full characterization of the simu-

lator/test-object interaction.

The numerical results of this study are based on an approximate, amalytical
formula for the solution of an exact matrix equation, It will be worthwhile
to attempt an accurate, numerical solution of the matrix equation directly.
Such a solution 1s feasible with the availability of large, advanced computers.
It will not only provide accurate technical data, but will also represent a

valuable standard whereby the reliability of future analytical investigations

can be gauged.
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APPENDIX

THIN-CYLINDER LIMIT

In the thin-cylinder limit (a/L -+ 0) equation (62) can be shown to have

" =

the simple solution s" = % k c .
m m

By equation (45) the quantity aim varies like n-4 for large n . Thus
the contribution to the two sums in equation (62) comes mainly from terms of
small n . Because of this property, one can replace the function W& by its

thin-cylinder limit at small n . By equation (57) ome has

Wr'l(w) - - n ( %) as 2450 (A1)

1
the
n

Therefore equation (62) becomes

1 22

2 p%

Oen n nm

=y o (A2)
1
€

N
[/}]
o
\/.\)
[}
o]
ht~18

2
%am
0 ™n

He-18

© 1 2
" 2 z - B
Sm 2 n=0 € ™
e (A3)
c z 1 2
—a
=0 Sn nm

The two sums can be evaluated by invoking equatioms (38) and (40):

)

1 .2 L+b L+b Y
——— - 1] - v _ — 3 '
Lo 8 m I dz f dz'cos k_(z-b)cos k (2" -b) ) - sin p 2 sin p z

b b n=0 "n

1
3 Lh




® 1 2 L+b 1+b o« 1
— = ' - L —
2 = % L dzL dz'sin km(z b)sin km(z b) z — cos p_z cos pnz'
n=0 n n=0 n
=1
7 Lh (A4)
where use has been made of the identities
T 1 h
Z — sinp zsinpz' =35 8(z-2")
n n 2
n=0 n
(A5)

«©

L N PP
2 — oS p_z COS P 2 26(2 z')
n=0 "n

for b < z,2' < L+b . Substituting equations (A4) into equation (A3) one

obtains the simple result

Sl'l'l = * kmc (A6)
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